Применение разных способов разложения многочлена на множители. Многочлены. Разложение многочлена на множители: способы, примеры. Алгоритм разложения на конкретном примере

Для разложения многочленов на множители мы применяли вынесение общего множителя за скобки, группировку, формулы сокращённого умножения. Иногда удаётся разложить многочлен на множители, применив последовательно несколько способов. При этом начинать преобразование следует, если это возможно, с вынесения общего множителя за скобки.

Пример 1. Разложим на множители многочлен 10а 3 - 40а.

Решение: Члены этого многочлена имеют общий множитель 10а. Вынесем этот множитель за скобки:

10а 3 - 40а = 10а (а 2 - 4).

Разложение на множители можно продолжить, применив к выражению а 2 - 4 формулу разности квадратов. В результате получим в качестве множителей многочлены более низких степеней.

10а(а 2 - 4) = 10а(а + 2)(а - 2).

10а 3 - 40а = 10а(а + 2) (а - 2).

Пример 2. Разложим на множители многочлен

ab 3 - 3b 3 + аb 2 у - Зb 2 у.

Решение: Сначала вынесем за скобки общий множитель b2:

ab 3 - 3b 3 + ab 2 y - 3b 2 y = b 2 (ab - 3b + ay - 3y).

Попытаемся теперь разложить на множители многочлен

ab - 3b + ау - 3у.

Сгруппировав первый член со вторым и третий с четвёртым, будем иметь

аb - 3b + ау - Зу = b(а - 3) + у(а - 3) = (а - 3)(b + у).

Окончательно получим

аb 3 - Зb 3 + ab 2 y - Зb 2 у = b 2 (а - 3)(b + у).

Пример 3. Разложим на множители многочлен а 2 - 4ах - 9 + 4х 2 .

Решение: Сгруппируем первый, второй и четвёртый члены многочлена. Получим трёхчлен а 2 - 4ах + 4х 2 , который можно представить в виде квадрата разности. Поэтому

а 2 - 4ах - 9 + 4х 2 = (а 2 - 4ах + 4х 2) - 9 = (а - 2х) 2 - 9.

Полученное выражение можно разложить на множители но формуле разности квадратов:

(а - 2х) 2 - 9 = (а - 2х) 2 - З 2 = (а - 2х - 3)(а - 2х + 3).

Следовательно,

а 2 - 4ах - 9 + 4х 2 = (а - 2х - 3)(а - 2х + 3).

Заметим, что при разложении многочлена на множители имеют в виду представление его в виде произведения нескольких многочленов, в котором хотя бы два множителя являются многочленами ненулевой степени (т. е. не являются числами).

Не каждый многочлен можно разложить на множители. Например, нельзя разложить на множители многочлены х 2 + 1, 4х 2 - 2х + 1 и т. п.

Рассмотрим пример использования разложения на множители для упрощения вычислений с помощью калькулятора.

Пример 4. Найдём с помощью калькулятора значение многочлена бх 3 + 2х 2 - 7х + 4 при х = 1,2.

Решение: Если выполнять действия в принятом порядке, то сначала придётся найти значения выражений x 3 5, х 2 2 и 7х, записать результаты на бумаге или ввести их в память калькулятора, а затем перейти к действиям сложения и вычитания. Однако искомый результат можно получить гораздо проще, если преобразовать данный многочлен следующим образом:

бх 3 + 2х 2 - 7х + 4 = (5х 2 + 2х - 7)х + 4 = ((5х + 2)х - 7)х + 4.

Выполнив вычисления для х = 1,2, найдём, что значение многочлена равно 7,12.

Упражнения

Контрольные вопросы и задания

  1. Приведите пример целого выражения и выражения, не являющегося целым.
  2. Какие действия надо выполнить и в каком порядке, чтобы представить целое выражение 4х (3 - х) 2 + (х 2 - 4)(х + 4) в виде многочлена?
  3. Какие способы разложения многочленов на множители вам известны?

В предыдущем уроке мы изучили умножение многочлена на одночлен. Например, произведение монома a и полинома b + c находится так:

a(b + c) = ab + bc

Однако в ряде случае удобнее выполнить обратную операцию, которую можно назвать вынесением общего множителя за скобки:

ab + bc = a(b + c)

Например, пусть нам надо вычислить значение полинома ab + bc при значениях переменных a = 15,6, b = 7,2, c = 2,8. Если подставить их напрямую в выражение, то получим

ab + bc = 15.6 * 7.2 + 15.6 * 2.8

ab + bc = a(b + c) = 15.6 * (7.2 + 2.8) = 15.6 * 10 = 156

В данном случае мы представили полином ab + bc как произведение двух множителей: a и b + с. Данное действие называют разложением многочлена на множители.

При этом каждый из множителей, на которые разложили многочлен, в свою очередь может быть многочленом или одночленом.

Рассмотрим полином 14ab - 63b 2 . Каждый из входящих в него одночленов можно представить как произведение:

Видно, что у обоих многочленов есть общий множитель 7b. Значит, его можно вынести за скобки:

14ab - 63b 2 = 7b*2a - 7b*9b = 7b(2a-9b)

Проверить правильность вынесения множителя за скобки можно с помощью обратной операции - раскрытия скобки:

7b(2a - 9b) = 7b*2a - 7b*9b = 14ab - 63b 2

Важно понимать, что часто полином можно разложить несколькими способами, например:

5abc + 6bcd = b(5ac + 6cd) = c(5ab + 6bd) = bc(5a + 6d)

Обычно стремятся вынести, грубо говоря, «наибольший» одночлен. То есть раскладывают полином так, чтобы из оставшегося полинома больше нечего нельзя было вынести. Так, при разложении

5abc + 6bcd = b(5ac + 6cd)

в скобках осталась сумма одночленов, у которых есть общий множитель с. Если же вынести и его, то общих множителей в скобках не останется:

b(5ac + 6cd) = bc(5a + 6d)

Разберем детальнее, как находить общие множители у одночленов. Пусть надо разложить сумму

8a 3 b 4 + 12a 2 b 5 v + 16a 4 b 3 c 10

Она состоит из трех слагаемых. Сначала посмотрим на числовые коэффициенты перед ними. Это 8, 12 и 16. В 3 уроке 6 класса рассматривалась тема НОД и алгоритм его нахождения.Это наибольший общий делитель.Почти всегда его можно подобрать устно. Числовым коэффициентом общего множителя как раз будет НОД числовых коэффициентов слагаемых полинома. В данном случае это число 4.

Далее смотрим на степени у этих переменных. В общем множителе у букв должны быть минимальные степени, которые встречаются в слагаемых. Так, у переменной a в многочлене степени 3, 2, и 4 (минимум 2), поэтому в общем множителе будет стоять a 2 . У переменной b минимальная степень равна 3, поэтому в общем множителе будет стоять b 3:

8a 3 b 4 + 12a 2 b 5 v + 16a 4 b 3 c 10 = 4a 2 b 3 (2ab + 3b 2 c + 4a 2 c 10)

В результате у оставшихся слагаемых 2ab, 3b 2 c, 4a 2 c 10 нет ни одной общей буквенной переменной, а у их коэффициентов 2, 3 и 4 нет общих делителей.

Выносить за скобки можно не только одночлены, но и многочлены. Например:

x(a-5) + 2y(a-5) = (a-5)(x+2y)

Еще один пример. Необходимо разложить выражение

5t(8y - 3x) + 2s(3x - 8y)

Решение. Напомним, что знак минус меняет знаки в скобках на противоположные, поэтому

-(8y - 3x) = -8y + 3x = 3x - 8y

Значит, можно заменить (3x - 8y) на - (8y - 3x):

5t(8y - 3x) + 2s(3x - 8y) = 5t(8y - 3x) + 2*(-1)s(8y - 3x) = (8y - 3x)(5t - 2s)

Ответ: (8y - 3x)(5t - 2s).

Запомним, что вычитаемое и уменьшаемое можно поменять местами, если изменить знак перед скобками:

(a - b) = - (b - a)

Верно и обратное: минус, уже стоящий перед скобками, можно убрать, если одновременно переставить местами вычитаемое и уменьшаемое:

Этот прием часто используется при решении заданий.

Способ группировки

Рассмотрим ещё один способ разложения многочлена на множители, который помогает раскладывать полином. Пусть есть выражение

ab - 5a + bc - 5c

Вынести множитель, общий для всех четырех мономов, не получается. Однако можно представить этот полином как сумму двух многочленов, и в каждом из них вынести переменную за скобки:

ab - 5a + bc - 5c = (ab - 5a) + (bc - 5c) = a(b - 5) + c(b - 5)

Теперь можно вынести выражение b - 5:

a(b - 5) + c(b - 5) = (b - 5)(a + c)

Мы «сгруппировали» первое слагаемое со вторым, а третье с четвертым. Поэтому описанный метод называют способом группировки.

Пример. Разложим полином 6xy + ab- 2bx- 3ay.

Решение. Группировка 1-ого и 2-ого слагаемого невозможна, так как у них нет общего множителя. Поэтому поменяем местами мономы:

6xy + ab - 2bx - 3ay = 6xy - 2bx + ab - 3ay = (6xy - 2bx) + (ab - 3ay) = 2x(3y - b) + a(b - 3y)

Разности 3y - b и b - 3y отличаются только порядком переменных. В одной из скобок его можно изменить, вынеся знак минус за скобки:

(b - 3y) = - (3y - b)

Используем эту замену:

2x(3y - b) + a(b - 3y) = 2x(3y - b) - a(3y - b) = (3y - b)(2x - a)

В результате получили тождество:

6xy + ab - 2bx - 3ay = (3y - b)(2x - a)

Ответ: (3y - b)(2x - a)

Группировать можно не только два, а вообще любое количество слагаемых. Например, в полиноме

x 2 - 3xy + xz + 2x - 6y + 2z

можно сгруппировать первые три и последние 3 одночлена:

x 2 - 3xy + xz + 2x - 6y + 2z = (x 2 - 3xy + xz) + (2x - 6y + 2z) = x(x - 3y + z) + 2(x - 3y + z) = (x + 2)(x - 3y + z)

Теперь рассмотрим задание повышенной сложности

Пример. Разложите квадратный трехчлен x 2 - 8x +15.

Решение. Данный полином состоит всего из 3 одночленов, а потому, как кажется, группировку произвести не получится. Однако можно произвести такую замену:

Тогда исходный трехчлен можно представить следующим образом:

x 2 - 8x + 15 = x 2 - 3x - 5x + 15

Сгруппируем слагаемые:

x 2 - 3x - 5x + 15 = (x 2 - 3x) + (- 5x + 15) = x(x - 3) - 5(x - 3) = (x - 5)(x - 3)

Ответ: (x- 5)(х - 3).

Конечно, догадаться о замене - 8х = - 3х - 5х в приведенном примере нелегко. Покажем иной ход рассуждений. Нам надо разложить полином второй степени. Как мы помним, при перемножении многочленов их степени складываются. Это значит, что если мы и сможем разложить квадратный трехчлен на два множителя, то ими окажутся два полинома 1-ой степени. Запишем произведение двух многочленов первой степени, у которых старшие коэффициенты равны 1:

(x + a)(x + b) = x 2 + xa + xb + ab = x 2 + (a + b)x + ab

Здесь за a и b мы обозначили некие произвольные числа. Чтобы это произведение равнялось исходному трехчлену x 2 - 8x +15, надо подобрать подходящие коэффициенты при переменных:

С помощью подбора можно определить, что этому условию удовлетворяют числа a= - 3 и b = - 5. Тогда

(x - 3)(x - 5) = x 2 * 8x + 15

в чем можно убедиться, раскрыв скобки.

Для простоты мы рассмотрели только случай, когда у перемножаемых полиномов 1-ой степени старшие коэффициенты равны 1. Однако они могли равняться, например, 0,5 и 2. В этом случае разложение выглядело бы несколько иначе:

x 2 * 8x + 15 = (2x - 6)(0.5x - 2.5)

Однако, вынеся коэффициент 2 из первой скобки и умножив его на вторую, получили бы изначальное разложение:

(2x - 6)(0.5x - 2.5) = (x - 3) * 2 * (0.5x - 2.5) = (x - 3)(x - 5)

В рассмотренном примере мы разложили квадратный трехчлен на два полинома первой степени. В дальнейшем нам часто придется это делать. Однако стоит отметить, что некоторые квадратные трехчлены, например,

невозможно разложить таким образом на произведение полиномов. Доказано это будет позднее.

Применение разложение многочленов на множители

Разложение полинома на множители может упростить выполнение некоторых операций. Пусть необходимо выполнить вычисление значения выражения

2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9

Вынесем число 2, при этом степень каждого слагаемого уменьшится на единицу:

2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 = 2(1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8)

Обозначим сумму

2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8

за х. Тогда записанное выше равенство можно переписать:

x + 2 9 = 2(1 + x)

Получили уравнение, решим его (см. урок уравнения):

x + 2 9 = 2(1 + x)

x + 2 9 = 2 + 2x

2x - x = 2 9 - 2

x = 512 - 2 = 510

Теперь выразим искомую нами сумму через х:

2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 = x + 2 9 = 510 + 512 = 1022

При решении этой задачи мы возводили число 2 только в 9-ую степень, а все остальные операции возведения в степень удалось исключить из вычислений за счет разложения многочлена на множители. Аналогично можно составить формулу вычисления и для других подобных сумм.

Теперь вычислим значение выражения

38.4 2 - 61.6 * 29.5 + 61.6 * 38.4 - 29.5 * 38.4

38.4 2 - 61.6 * 29.5 + 61.6 * 38.4 - 29.5 * 38.4 = 38.4 2 - 29.5 * 38.4 + 61.6 * 38.4 - 61.6 * 29.5 = 38.4(38.4 - 29.5) + 61.6(38.4 - 29.5) = (38.4 + 61.6)(38.4 - 29.5) = 8.9*100 = 890

81 4 - 9 7 + 3 12

делится на 73. Заметим, что числа 9 и 81 являются степенями тройки:

81 = 9 2 = (3 2) 2 = 3 4

Зная это, произведем замену в исходном выражении:

81 4 - 9 7 + 3 12 = (3 4) 4 - (3 2) 7 + 3 12 = 3 16 - 3 14 + 3 12

Вынесем 3 12:

3 16 - 3 14 + 3 12 = 3 12 (3 4 - 3 2 + 1) = 3 12 * (81 - 9 + 1) = 3 12 * 73

Произведение 3 12 .73 делится на 73 (так как на него делится один из множителей), поэтому и выражение 81 4 - 9 7 + 3 12 делится на это число.

Вынесение множителей может использоваться для доказательства тождеств. Например, докажем верность равенства

(a 2 + 3a) 2 + 2(a 2 + 3a) = a(a + 1)(a + 2)(a + 3)

Для решения тождества преобразуем левую часть равенства, вынеся общий множитель:

(a 2 + 3a) 2 + 2(a 2 + 3a) = (a 2 + 3a)(a 2 + 3a) + 2(a 2 + 3a) = (a 2 + 3a)(a 2 + 3a + 2)

(a 2 + 3a)(a 2 + 3a + 2) = (a 2 + 3a)(a 2 + 2a + a + 2) = (a 2 + 3a)((a 2 + 2a) + (a + 2) = (a 2 + 3a)(a(a + 2) + (a + 2)) = (a 2 + 3a)(a + 1)(a + 2) = a(a + 3)(a + z)(a + 2) = a(a + 1)(a + 2)(a + 3)

Ещё один пример. Докажем, при любых значениях переменных x и у выражение

(x - y)(x + y) - 2x(x - y)

не является положительным числом.

Решение. Вынесем общий множитель х - у:

(x - y)(x + y) - 2x(x - y) = (x - y)(x + y - 2x) = (x - y)(y - x)

Обратим внимание, что мы получили произведение двух похожих двучленов, отличающихся лишь порядком букв x и y. Если бы мы поменяли местами в одной из скобок переменные, то получили бы произведение двух одинаковых выражений, то есть квадрат. Но для того, чтобы поменять местами x и y, нужно перед скобкой поставить знак минус:

(x - y) = -(y - x)

Тогда можно записать:

(x - y)(y - x) = -(y - x)(y - x) = -(y - x) 2

Как известно, квадрат любого числа больше или равен нулю. Это относится и к выражению (у - х) 2 . Если же перед выражением стоит минус, то оно должно быть меньше или равным нулю, то есть не является положительным числом.

Разложение полинома помогает решать некоторые уравнения. При этом используется следующее утверждение:

Если в одной части уравнения стоит ноль, а в другой произведение множителей, то каждый из них следует приравнять нулю.

Пример. Решите уравнение (s - 1)(s + 1) = 0.

Решение. В левой части записано произведение мономов s - 1 и s + 1, а в правой - ноль. Следовательно, нулю должно равняться или s - 1, или s + 1:

(s - 1)(s + 1) = 0

s - 1 = 0 или s + 1 = 0

s = 1 или s = -1

Каждое из двух полученных значений переменной s является корнем уравнения, то есть оно имеет два корня.

Ответ: -1; 1.

Пример. Решите уравнение 5w 2 - 15w = 0.

Решение. Вынесем 5w:

Снова в левой части записано произведение, а в правой ноль. Продолжим решение:

5w = 0 или (w - 3) = 0

w = 0 или w = 3

Ответ: 0; 3.

Пример. Найдите корни уравнения k 3 - 8k 2 + 3k- 24 = 0.

Решение. Сгруппируем слагаемые:

k 3 - 8k 2 + 3k- 24 = 0

(k 3 - 8k 2) + (3k- 24) = 0

k 2 (k - 8) + 3(k - 8) = 0

(k 3 + 3)(k - 8) = 0

k 2 + 3 = 0 или k - 8 = 0

k 2 = -3 или k = 8

Заметим, что уравнение k 2 = - 3 решения не имеет, так как любое число в квадрате не меньше нуля. Поэтому единственным корнем исходного уравнения является k = 8.

Пример. Найдите корни уравнения

(2u - 5)(u + 3) = 7u + 21

Решение: Перенесем все слагаемые в левую часть, а после сгруппируем слагаемые:

(2u - 5)(u + 3) = 7u + 21

(2u - 5)(u + 3) - 7u - 21 = 0

(2u - 5)(u + 3) - 7(u + 3) = 0

(2u - 5 - 7)(u + 3) = 0

(2u - 12)(u + 3) = 0

2u - 12 = 0 или u + 3 = 0

u = 6 или u = -3

Ответ: - 3; 6.

Пример. Решите уравнение

(t 2 - 5t) 2 = 30t - 6t 2

(t 2 - 5t) 2 = 30t - 6t 2

(t 2 - 5t) 2 - (30t - 6t 2) = 0

(t 2 - 5t)(t 2 - 5t) + 6(t 2 - 5t) = 0

(t 2 - 5t)(t 2 - 5t + 6) = 0

t 2 - 5t = 0 или t 2 - 5t + 6 = 0

t = 0 или t - 5 = 0

t = 0 или t = 5

Теперь займемся вторым уравнением. Перед нами снова квадратный трехчлен. Чтобы разложить его на множители методом группировки, нужно представить его в виде суммы 4 слагаемых. Если произвести замену - 5t = - 2t - 3t, то дальше удастся сгруппировать слагаемые:

t 2 - 5t + 6 = 0

t 2 - 2t - 3t + 6 = 0

t(t - 2) - 3(t - 2) = 0

(t - 3)(t - 2) = 0

T - 3 = 0 или t - 2 = 0

t = 3 или t = 2

В результате получили, что у исходного уравнения есть 4 корня.

Открытый урок

по математике

в 7 классе

«Применение различных способов для разложения многочлена на множители».

Прокофьева Наталья Викторовна,

Учитель математики

Цели урока

Образовательная:

  1. повторить формулы сокращенного умножения
  2. формирование и первичное закрепление умения разложения многочленов на множители различными способами.

Развивающие :

  1. развитие внимательности, логического мышления, внимания, умения систематизировать и применять полученные знания, математически грамотной речи.

Воспитательная :

  1. формирование интереса к решению примеров;
  2. воспитание чувства взаимопомощи, самоконтроля, математической культуры.

Тип урока: комбинированный урок

Оборудование: проектор, презентация, доска, учебник.

Предварительная подготовка к уроку:

  1. учащиеся должны знать следующие темы:
  1. Возведение в квадрат суммы и разности двух выражений
  2. Разложение на множители с помощью формул квадрата суммы и квадрата разности
  3. Умножение разности двух выражений на их сумму
  4. Разложение разности квадратов на множители
  5. Разложение на множители суммы и разности кубов
  1. Владеть навыками работы с формулами сокращенного умножения.

План урока

  1. Организационный момент (нацелить учащихся на урок)
  2. Проверка домашнего задания (коррекция ошибок)
  3. Устные упражнения
  4. Изучение нового материала
  5. Тренировочные упражнения
  6. Упражнения на повторение
  7. Подведение итогов урока
  8. Сообщение домашнего задания

Ход урока

I. Организационный момент.

Урок потребует от вас знаний формул сокращенного умножения, умения применять их, и конечно, внимания.

II. Проверка домашнего задания.

Вопросы по домашнему заданию.

Разбор решения у доски.

II. Устные упражнения.

Математика нужна,
Без нее никак нельзя
Учим, учим мы, друзья,
Что же помним мы с утра?

Сделаем разминку.

Разложить на множители (Слайд 3)

8a – 16b

17x² + 5x

c (x + y) + 5 (x + y)

4a² - 25 (Слайд 4)

1 - y³

ax + ay + 4x + 4y Слайд 5)

III. Самостоятельная работа.

У каждого из вас на столе таблица. Вверху справа подпишите работу. Заполни таблицу. Время выполнения работы 5 минут. Приступили.

Закончили.

Поменяйтесь пожалуйста, работами с соседом.

Отложили ручки и взяли карандаши.

Проверяем работу – внимание на слайд. (Слайд 6)

Выставляем отметку – (Слайд 7)

7(+) - 5

6-5(+) - 4

4(+) - 3

Положите формулы на середину стола. Приступаем к изучению нового материала.

IV. Изучение нового материала

В тетрадях записываем число, классная работа и тему сегодняшнего урока.

Учитель.

  1. При разложении многочленов на множители иногда используют не один, а несколько способов, применяя их последовательно.
  2. Примеры:
  1. 5а² - 20 = 5 (а² - 4) = 5 (а-2)(а+2). (Слайд 8)

Мы используем вынесение общего множителя за скобки и формулу разности квадратов.

  1. 18х³ + 12х² + 2х = 2х (9х² + 6х + 1) = 2х (3х + 1) ². (Слайд 9)

Что можно сделать с выражением? Каким способом будем пользоваться для разложения на множители?

Здесь мы используем вынесение за скобки общего множителя и формулу квадрата суммы.

  1. аb³ – 3b³ + аb²у – 3b²у = b² (ab – 3b + ay – 3y) = b² ((ab – 3b) + (ay – 3y)) = b² (b(a – 3) + y(a – 3)) = b² (a – 3)(b +y). (Слайд 10)

Что можно сделать с выражением? Каким способом будем пользоваться для разложения на множители?

Здесь был вынесен общий множитель за скобки и применен способ группировки.

  1. Порядок разложения на множители: (Слайд 11)
  1. Не каждый многочлен можно разложить на множители. Например: х² + 1; 5х² + х + 2 и т.п. (Слайд 12)

V. Тренировочные упражнения

Перед началом проводим физкультминутку (Слайд 13)

Быстро встали, улыбнулись.

Выше-выше потянулись.

Ну-ка, плечи распрямите,

Поднимите, опустите.

Вправо, влево повернитесь,

Сели, встали. Сели, встали.

И на месте побежали.

И еще гимнастику для глаз:

  1. Крепко зажмурьте глаза на 3-5с, а затем откройте на 3-5с. Повторяем 6 раз.
  2. Поставьте большой палец руки на расстоянии 20-25см от глаз, смотрите двумя глазами на конец пальца 3-5с, а затем смотрите двумя глазами на трубу. Повторяем 10 раз.

Молодцы, присаживайтесь.

Задание на урок:

№934 авд

№935 ав

№937

№939 авд

№1007 авд

VI.Упражнения на повторение.

№ 933

VII. Подведение итогов урока

Учитель задает вопросы, а учащиеся отвечают на них по желанию.

  1. Назовите известные способы разложения многочлена на множители.
  1. Вынести общий множитель за скобку
  2. Разложение многочлена на множители по формулам сокращенного умножения.
  3. способ группировки
  1. Порядок разложения на множители:
  1. Вынести общий множитель за скобку (если он есть).
  2. Попытаться разложить многочлен на множители по формулам сокращенного умножения.
  3. Если предыдущие способы не привели к цели, то попытаться применить способ группировки.

Поднимите руку:

  1. Если ваше отношение к уроку «Я ничего не понял, и у меня совсем ничего не получилось»
  2. Если ваше отношение к уроку «были сложности, но я справился»
  3. Если ваше отношение к уроку «У меня получилось почти все»

Разложить на множители 4 a² - 25 = 1 - y³ = (2a – 5) (2a + 5) (1 – y) (1+y+y ²) Разложение многочлена на множители по формулам сокращенного умножения

Разложить на множители ax+ay+4x+4y= =a(x+y)+4(x+y)= (ax+ay)+(4x+4y)= (x+y) (a+4) Способ группировки

(а + b) ² a ² + 2ab + b ² Квадрат суммы a² - b² (a – b)(a +b) Разность квадратов (a – b)² a² - 2ab + b² Квадрат разности a³ + b ³ (a + b) (a² - ab + b²) Сумма кубов (a + b) ³ a³ + 3 a²b+3ab² + b³ Куб суммы (a - b) ³ a³ - 3a²b+3ab² - b³ Куб разности a³ - b³ (a – b) (a² + ab + b²) Разность кубов

ВЫСТАВЛЯЕМ ОТМЕТКИ 7 (+) = 5 6 или 5 (+) = 4 4 (+) = 3

Пример №1. 5 a² - 20 = = 5(a² - 4) = = 5(a – 2) (a+2) Вынесение общего множителя за скобки Формула разности квадратов

Пример №2. 18 x³ + 12x ² + 2x = =2x (9x ² +6x+1)= =2x(3x+1) ² Вынесение общего множителя за скобки Формула квадрата суммы

Пример №3. ab³ –3b³+ab²y–3b²y= = b²(ab–3b+ay-3y)= =b²((a b -3 b)+(a y -3 y)= =b²(b(a-3)+y(a-3))= =b²(a-3)(b+y) Вынести множитель за скобки Сгруппировать слагаемые в скобках Вынести множители за скобки Вынести общий множитель за скобки

Порядок разложения на множители Вынести общий множитель за скобку (если он есть). Попытаться разложить многочлен на множители по формулам сокращенного умножения. 3. Если предыдущие способы не привели к цели, то попытаться применить способ группировки.

Не каждый многочлен можно разложить на множители. Например: х ² +1 5х ² + х + 2

ФИЗКУЛЬТМИНУТКА

Задание на урок № 934 авд № 935 ав № 937 № 939 авд № 1007 авд

Поднимите руку: Если ваше отношение к уроку «Я ничего не понял, и у меня совсем ничего не получилось» Если ваше отношение к уроку «были сложности, но я справился» Если ваше отношение к уроку «У меня получилось почти все»

Домашнее задание: п. 38 №936 №938 №954


  • Формирование умений применять различные способы для разложения на множители.
  • Способствовать воспитанию культуры речи, аккуратности записи, самостоятельности.
  • Формирование умений частично-поисковой деятельности: осознавать проблему, анализировать, делать выводы.

Оборудование: учебник, доска, тетрадь, карточки с заданиями.

Тип урока: Урок применения ЗУН.

Метод обучения: проблемный, частично-поисковый.

Форма организации учебной деятельности: групповая, фронтальная, индивидуальная, работа в парах.

Продолжительность: 1 урок (45 мин)

План урока:

  1. Организация начала занятия. (1 мин)
  2. Проверка домашнего задания. (2 мин)
  3. Актуализация. (5 мин)
  4. Изучение нового материала. (10 мин)
  5. Закрепление нового материала. (15 мин)
  6. Контроль и самопроверка знаний. (8 мин)
  7. Подведение итогов. (2 мин)
  8. Домашнее задание. (2 мин)

Ход урока

I. Организационный момент

Здравствуйте, ребята.

Тема урока “Применение различных способов для разложения на множители”. Сегодня мы будем с вами формировать навыки применения различных способов разложения на множители и еще раз убедимся в полезности умения раскладывать многочлен на множители.

Желаю вам поработать активно на уроке. (Записать тему в тетрадь) .

II. Проверка домашнего задания

Перед началом урока учащиеся сдают тетради с выполненным домашним заданием на проверку. Обсуждаются вопросы, вызвавшие затруднения.

III. Актуализация опорных знаний.

Прежде чем мы приступим к решению задач, проверим, насколько мы готовы к этому. Давайте вспомним, что мы знаем по теме урока.

3.1. Фронтальный опрос:

а) Что значит разложить многочлен на множители?
б) Какие основные методы разложения многочлена на множители вы знаете?
в) Любой многочлен можно разложить на множители? Например?
г) В каких заданиях иногда полезно использовать разложение на множители?

3.2. Соединить линиями многочлены с соответствующими им способами разложения на множители.

3.3. Найдите неверное утверждение:

а)a 2 + b 2 – 2ab = (а – b) 2

б) m 2 + 2mn – n 2 = (m – n) 2

в) –2pt + p 2 + t 2 = (p – t) 2

г) 25 – 16 с 2 = (5 – 4с)(5 – 4с) (ошибки б, г)

3.4. Представьте в виде произведения: а) 64x 2 – 1; б) (d - 3) 2 – 36;

3.5. Решите уравнение х 2 – 16 = 0 (4; –4)

3.5. Найти значение выражения 34 2 – 24 2 (580)

IV. Изучение материала

Для разложения многочленов на множители мы применяли вынесение общего множителя за скобки, группировку, формулы сокращенного умножения.

Как вы думаете, бывают ли ситуации, в которых удается разложить многочлен на множители, применив последовательно несколько способов?

Найти ответ на этот вопрос нам помогут следующее задание:

Разложите многочлен на множители и укажите, какие способы использовались при этом. (Работа в парах с последующим решением у доски)

Пример 1. 9x 3 – 36x применили 2 способа:

Пример 2. a 2 + 2ab + b 2 – c 2 применили 2 способа:

  • группировку;
  • использование формул сокращенного умножения.

Пример 3. y 3 – 3y 2 + 6y – 18 применили 3 способа:

  • группировку;
  • использование формул сокращенного умножения;
  • вынесение общего множителя за скобки.

Пример 4. x 3 + 3x 2 + 2x применили 3 способа:

  • вынесение общего множителя за скобки;
  • предварительное преобразование;
  • группировку.

Делаем вывод: иногда удается разложить многочлен на множители, применив последовательно несколько способов. Чтобы успешно решать такие примеры, сегодня давайте выработаем план последовательного их применения:

  1. Вынести общий множитель за скобку (если он есть).
  2. Попробовать разложить многочлен на множители по формулам сокращенного умножения.
  3. Попытаться применить способ группировки (если предыдущие способы не привели к цели).

V. Упражнения для закрепления изложенной темы

5.1. Совокупность различных приемов разложения на множители позволяет легко и изящно производить арифметические вычисления, решать уравнения вида ах 2 + bх + с = 0 (а ≠ 0) (такие уравнения называются квадратными, мы с вами займемся их изучением в 8 классе).

* Решить уравнение: а) х 2 – 17х + 72 = 0, б) х 2 + 10х + 21 = 0

Подсказка: Некоторый член многочлена раскладывается на необходимые слагаемые или дополняется путем прибавления к нему некоторого слагаемого. В последнем случае, чтобы многочлен не изменился, от него отнимается такое же слагаемое.

(Два ученика решают самостоятельно в тетради уравнения. Ответ: а) 8; 9; б) - 1; - 5).

Выполнить упражнение из учебника №1016 (в), 1017(в), стр. 186

(Два ученика решают на доске, остальные по вариантам в тетради ).

5.2. Решить уравнения (Учащиеся работают в парах с последующей самопроверкой)

№ 949, стр.177 а) х 3 – х = 0 б) 9х – х 3 = 0 в) х 3 + х 2 = 0 г) 5х 4 – 2х 2 = 0

** (Индивидуальные задания для более подготовленных учащихся)

Карточка 1 Карточка 2 Карточка 3
Решите уравнение и укажите сумму корней

x 2 + 3x + 6 + 2x = 0

Решите уравнение и укажите сумму корней
x(x+3) +2(3+x) =0

сумма равна -5

Сумма корней данного уравнения:

Сумма корней уравнения:.

VI. Контроль и самопроверка знаний.

Рассматриваемая тема – неотъемлемая часть ГИА по математике. Для контроля и самопроверки знаний по данной теме вам предлагается выполнить тестовые задания из тренировочных заданий ГИА. В тестовых заданиях обведите ответ.

Индивидуальная работа по карточкам: (Учащиеся выполняют тестовые задания ГИА , + самопроверка)

Какие из данных выражений тождественно равны 4х-10у
  1. 2(2х-5у)
  2. -2(5у-2х)
  3. -10у-4х
  4. -10у+4х?

а)1;3; б) все; в)1;2;4; г)нет

Какие из данных выражений тождественно равны - 3(-2а+у)
  1. -3(-у+2а)
  2. 6а-3у
  3. 3(2а-у)
  4. 3у-6а?

а) все; б)2; у) 2;3; в)1;4

Какие из данных выражений тождественно равны -6а+12р
  1. -6(а-2р)
  2. 12р-6а
  3. 6(-а+2р)
  4. -6(-р+а) ?

а)1; у) все; в) 2;4; г)1;3

3а 3 -3а 2 -5а+5.

а) (а-1)(3а 2 +5);

б) (а+1)(3а 2 -5);

в) (а-1)(5-3а 2);

е) (а-1)(3а 2 +5).

Представьте в виде произведения многочленов

13ах-26х-5ав+10в.

д) (а-2)(13х-5в);

б) (а+2)(3х-5в);

в) (3а-6)(4х-в);

г) (а-2)(5в-3х).

Представьте в виде произведения многочленов

bу-6b-5у 2 +30у.

а) (6-у)(b-5у);

б) (у -6)(b+5у);

с) (у -6)(b-5у);

г) (у -6)(5у- b).

Выполните действия: (5а-с) 2 .

а) 25а 2 +10ас+с 2 ;

б) 25а 2 +10ас-с 2 ;

р) 25а 2 -10ас+с 2 ;

г) 25а 2 -5ас+с 2 .

Выполните действия: (5х+2у) 2 .

а) 25х 2 +20ху+4у 2 ;успех

Учитель: Сверим ответы. Прочтите слова, которые у вас получились. Это именно те слова, которые сопутствуют семиклассникам при подготовке к ГИА в 9 классе.

VII. Подведение итогов урока

Учитель проводит фронтальный обзор основных этапов урока, оценивает работу учащихся и ориентирует учеников в домашнем задании.

VIII. Домашнее задание: п. 38, №950 (стр. 177), №1016 (г), 1017(г), стр. 186.

** Найдите значение выражения (х+3)2 -2 (х+3) (х-3) +(х-3)2 при x=100.

Значение данного выражения не зависит от выбора х.

Урок окончен. Спасибо за урок и помните, что знания, которые не пополняются ежедневно, убывают с каждым днем.

Используемая литература:

  1. Учебник «Алгебра 7 класс». Ю.Н. Макарычев, Н.Г. Миндюк и др. Под ред. С.А. Теляковского. – М.; Просвещение, 2009.
  2. Сборник тестовых заданий для тематического и итогового контроля. Алгебра 7. И.Л. Гусева и др. – М.; Интеллект-Центр, 2009.
  3. Государственная итоговая аттестация (по новой форме): 9 класс. Тематические тренировочные задания. Алгебра/ ФИПИ автор-составитель: В.Л. Кузнецова. – М.: Эксмо, 2010.

Многочлены являются важнейшим типом математических выражений. На основе многочленов построено множество уравнений, неравенств, функций. Задачи различного уровня сложности зачастую содержат этапы разностороннего преобразования многочленов. Так как математически любой полином представляет собой алгебраическую сумму нескольких одночленов, наиболее кардинальным и нужным изменением является преобразования ряда многочлена в произведение двух (или более) множителей. В уравнениях, обладающих возможностью обнуления одной из частей, перевод полинома на множители позволяет приравнять какую-то часть к нулю, и решить, таким образом, все уравнение.

Предыдущие видеоуроки показали нам, что в линейной алгебре существует три основных способа перевода многочленов в множители. Это вынесение общего множителя за скобки, перегруппировка по подобным членам, применение формул сокращенного умножения. Если все члены полинома обладают некой общей основой, то её легко можно вынести за скобки, оставив остатки от делений в виде измененного многочлена в скобках. Но чаще всего, один множитель не подходит под все одночлены, затрагивая лишь их часть. При этом, другая часть мономов может иметь свою общую основу. В таких случаях применяется способ группировки - по сути говоря, вынесение за скобки нескольких множителей, и создание комплексного выражения, которое можно преобразовать другими путями. И, наконец, существует целый комплекс специальных формул. Все они образованы абстрактными расчетами, использующими метод простейшего почленного переумножения. В ходе расчетов, многие элементы в начальном выражении сокращаются, оставляя небольшие многочлены. Что бы каждый раз не проводить емкие вычисления, можно применять готовые формулы, их обратные варианты, или обобщенные выводы этих формул.

На практике, часто бывает так, что в одном упражнении приходится комбинировать несколько приемов, в том числе, и из разряда преобразования многочленов. Рассмотрим пример. Разложить на множители бином:

Выносим общий множитель 3х за скобки:

3х3 - 3ху2 = 3х(х2 - у2)

Как можно заметить на видео, вторые скобки содержат разность квадратов. Применяем обратную формулу сокращенного умножения, получая:

3х(х2 - у2) = 3х(х + у)(х - у)

Другой пример. Преобразуем выражение вида:

18а2 - 48а + 32

Уменьшаем числовые коэффициенты, вынося за скобки двойку:

18а2 - 48а + 32 = 2(9а2 - 24а + 16)

Что бы найти подходящую формулу сокращенного умножения для данного случая, необходимо несколько скорректировать выражение, подогнав под условия формулы:

2(9а2 - 24а + 16) = 2((3а)2 - 2(3а)4 + (4)2)

Порой, формулу в запутанном выражении увидеть не так просто. Приходится применять методы разложения выражения на составляющие элементы, или добавлять мнимые пары конструкций, типа +х-х. Корректируя выражение, мы должны соблюдать правила преемственности знаков, и сохранности значения выражения. При этом, нужно стараться привести многочлен к полному соответствию с абстрактным вариантом формулы. По нашему примеру применяем формулу квадрата разности:

2((3а)2 - 2(3а)4 + (4)2) = 2(3а - 4)

Решим более сложное упражнение. Разложим на множители многочлен:

У3 - 3у2 + 6у - 8

Для начала, проведем удобную группировку - первый и четвертый элемент в одну группу, второй и третий - во вторую:

У3 - 3у2 + 6у - 8 = (у3 - 8) - (3у2 - 6у)

Обратим внимание, что знаки во вторых скобках сменились на противоположные, так как мы вынесли минус за пределы выражения. В первых скобках можем записать так:

(у3 - (2)3) - (3у2 - 6у)

Это позволяет применить формулу сокращенного умножения для нахождения разности кубов:

(у3 - (2)3) - (3у2 - 6у) = (у - 2)(у2 + 2у + 4) - (3у2 - 6у)

Выносим со вторых скобок общий множитель 3у, после чего, выносим из всего выражения (бинома) скобки (у - 2), приводим подобные слагаемые:

(у - 2)(у2 + 2у + 4) - (3у2 - 6у) = (у - 2)(у2 + 2у + 4) - 3у(у - 2) =
= (у - 2)(у2 + 2у + 4 - 3у) = (у - 2)(у2 - у + 4)

В общем приближении, существует определенный алгоритм действий при решении подобных упражнений.
1. Ищем общие множители для всего выражения;
2. Группируем подобные одночлены, ищем общие множители для них;
3. Стараемся вынести за скобки наиболее подходящее выражение;
4. Применяем формулы сокращенного умножения;
5. Если на каком-то этапе процесс не идет - вписываем мнимую пару выражений вида -х+х, или иные самоаннулирующиеся конструкции;
6. Приводим подобные слагаемые, сокращаем лишние элементы

Все пункты алгоритма редко когда применимы в одном задании, но общий ход решения любого упражнения по теме можно соблюдать в заданном порядке.