О контрольных размерах зубчатых колёс и боковом зазоре. Виды сопряжений зубьев колес в передаче Показатель характеризующий боковой зазор в зубчатой передаче

Зубчатые передачи собирают и испытывают обычно на заво­де-изготовителе. Редукторы малой и средней мощности отправ­ляют с завода-изготовителя запломбированными. Мощные ре­дукторы, а также открытые передачи с крупными шестернями поступают для монтажа в разобранном виде.

Все механически обработанные зубчатые передачи разделяют на 12 степеней точности. Для оборудования молочной промыш­ленности наиболее часто применяют цилиндрические передачи 6-11-й степени точности, конические 6-11-й и червячные 5-9-й степени точности (чем меньше номер степени, тем выше точ­ность зубчатого колеса, определяемая по нормам кинематической точности, плавности работы и контакта зубьев).

При сборке зубчатых передач необходимо проверить радиаль­ное и торцевое биение зубчатых колес, межцентровое расстояние, боковой зазор и степень прилегания рабочих поверхностей зубьев.

Радиальное и торцевое биение цилиндрических зубчатых пе­редач проверяют на специальных призмах перед установкой или в центрах после насадки на вал. Биение контролируют рейсмусом или индикатором (рис. 7.8). Для этого между зубьями колеса по­мещают цилиндрический калибр диаметром 1,68/и (где т - мо­дуль), на который устанавливают ножку индикатора и фиксируют положение его стрелки. Перекладывая калибр через 2-3 зуба и поворачивая вал, определяют разницу в показаниях индикатора для всего зубчатого колеса. Эта разница является величиной ра­диального биения по начальной окружности зубчатого колеса. Торцевое биение проверяют индикатором.

Боковые зазоры в зацеплении цилиндрических зубчатых колес контролируют щупом или индикатором (рис. 7.9). Для этого на ва­лу одного из зубчатых колес крепят поводок, конец которого упи­рается в ножку индикатора, установленного на корпус узла. Другое колесо закрепляют неподвижно фиксатором. Поводок вместе с ва­лом и колесом поворачивают в одну сторону, затем в другую (это можно сделать лишь на величину бокового зазора). Разницу в пока­заниях индикатора при первом и втором положении зубчатого ко­леса пересчитывают на величину бокового зазора по формуле

Сп = CR 1L ,

Где сп - величина бокового зазора, м; С - разница в показаниях индика­тора при первом и втором положениях зубчатого колеса, м; R - радиус начальной окружности, м; L - длина поводка, м.

В технических условиях фиксируют наименьший боковой зазор.

При сборке зубчатых передач с колесами, у которых модуль выше 6 мм, эти зазоры проверяют прокатыванием между зубьями
трех-четырех отрезков свинцовой проволочки, устанавливаемых на длине зуба.

Оттиски проволочек представляют собой полоски перемен­ной толщины. Меньшая толщина сь соответствует части боково­го зазора с рабочей стороны зуба, а большая с2 - с нерабочей. Сумма этих величин составляет боковой зазор, т. е. cn = с + с2.

Заканчивают проверку зубчатого зацепления осмотром отпе­чатков краски в местах контакта. Для этого зубья ведущей шес­терни покрывают тонким слоем сажи или синьки, разведенной на олифе, и проворачивают зубчатую передачу несколько раз.

На зубьях ведомого колеса появляются следы касания (отпе­чатки), по которым судят о качестве зацепления. Если отпечатки находятся в верхней части зуба, то межцентровое расстояние больше нормального. При оттиске в нижней части зуба колеса сближены больше, чем это необходимо. В правильно собранной передаче отпечатки располагаются в средней части боковой по­верхности зубьев по высоте и длине.

При недостаточном контакте поверхностей зубьев доводку на монтаже производят шабрением, притиркой абразивными по­рошками и пастами, притиркой с маслом под нагрузкой. Исполь­зование напильников категорически запрещается.

Конические передачи в основном собирают во время ремон­та. При этом вершины начальных конусов должны совпадать, а оси должны быть взаимно перпендикулярны. Отклонения в заце­плении не должны выходить за пределы допусков. Положение осей конических шестерен выверяют с помощью струн"с отвеса­ми, линеек и других универсальных инструментов. Установку конических колес проверяют по совпадениям их образующих в плоскости осей колеса. Допускаемое отклонение 0,1-0,5 мм. При проверке на краску обнаруживают следующие отклонения от нормы: недостаточный зазор - колеса чрезмерно сближены (рис. 7.10, г); межосевой угол меньше (рис. 7.10, в) или больше расчетного (рис. 7.10, 6). Если на зубьях ведущего или ведомого колес следы краски расположены плотно на одной стороне зуба на узком конце, а на другой стороне - на широком, это свиде­тельствует о перекосе осей зубчатых колес. Во всех случаях от­клонения от нормы исправляют дополнительными слесарными операциями. Характерные отпечатки при правильном зацеплении конических колес показаны на рис. 7.10, а.

Рис. 7.10. Контроль качества зацепления конической зубчатой передачи:

I - без нагрузки (при сборке); II - с полной нагрузкой (в работе); а - правильное зацепление; б - межосевой угол больше расчетного; в - меж осевой угол меньше расчетного; г - недостаточный зазор

При сборке червячной передачи проверяют межосевое рас­стояние валов червяка и червячного колеса, правильность положе­ния валов, боковой зазор в зацеплении и прилегание рабочих по­верхностей зубьев колеса и витков червяка. Установку червячной пары проверяют с помощью специально изготовляемых шаблонов и щупов, отвесов, масштабной линейки и уровня. С вала червяка опускают отвесы и измеряют расстояние от вала до боковой по­верхности колеса. При правильном зацеплении эти расстояния должны быть одинаковы. Такую проверку не всегда можно осуще­ствить, так как передача установлена в корпусе редуктора. Поэто­му при монтаже проверяют касание на краску (рис. 7.11). Смеще­ние касания в одну или другую сторону указывает на перекос осей. Приближение пятна касания к краю зуба свидетельствует об уве­личенном межосевом расстоянии, и наоборот.

Рис. 7.11. Контроль качества зацепления червячной передачи

Для нормальной работы червячной передачи большое значе­ние имеет величина бокового зазора (рис. 7.12), которая зависит от точности и размеров передачи. В собранных передачах вели­чину зазора определяют по повороту червяка при «мертвом» хо­де, т. е. при угловом перемещении червяка и неподвижном коле­се. В случае отсутствия этого зазора происходит заклинивание червяка.

В малогабаритных точных передачах, где боковой зазор очень мал, свободный поворот червяка определяют индикатором. На выступающих концах червяка и колеса крепят рычаги, ка­сающиеся индикаторов, фиксируют положение стрелки индика­тора в начальном положении.

Дефекты зацепления способствуют появлению дополнитель­ных звуков и шумов: стук и щелканье зубьев, временами исче­зающие, временами усиливающиеся, могут быть вызваны ошиб­ками шага зубьев или слишком большими зазорами; дребезжа­щие звуки и скрежет, влекущие за собой вибрацию корпуса пере­дачи, могут быть вызваны малыми боковыми зазорами (плотным зацеплением), наличием острых кромок на головках зубьев колес, перекосом осей колес; шум высокого тона, переходящий с увели­чением частоты вращения в резкий вой и постоянный неравно­мерный стук в зацеплении, происходит при искажении формы рабочих поверхностей зубьев или наличии на них местных де­фектов; периодически усиливающийся и ослабевающий шум, систематически повторяющийся при каждом обороте колеса, яв­ляется следствием эксцентричного расположения зубьев относи­тельно оси вращения или неплотной посадки.

Нормальная работа червячной передачи определяется при испытании ее вхолостую и под нагрузкой. При этом проверяют не только величину и характер пятен касания, но и температуру нагрева передачи, которая не должна превышать для передач 2-й и 3-й степени точности 80 °С, для передач 4-й степени точности - 65 °С. Чрезмерный нагрев указывает на дефекты сборки и изго­товления, недостаточную смазку или неправильный подбор сма­зочного масла.

Вид сопряжений зубьев колес в передаче характеризуется наименьшим гарантированным боковым зазором. Боковым зазором называют измеренное по нормали расстояние между нерабочими профилями зубьев колес, находящихся в зацеплении (рис. 5.133, а).

Боковой зазор необходим для обеспечения нормальных условий эксплуатации зубчатой передачи. Он компенсирует температурные деформации, погрешности монтажа передачи и служит для размещения смазки.

Рис. 5.133.

Системой допусков на зубчатые передачи устанавливается гарантированный боковой зазор 7^,т(п - наименьший предписанный боковой зазор. Величина гарантированного зазора определяется вне зависимости от степени точности колес и передачи.

Для удовлетворения требований различных отраслей промышленности, независимо от степени точности изготовления колес передачи, предусмотрено шесть видов сопряжений зубьев колес в передаче: А, В, С, Д Еи Н, определяющих различную величину у ^Срис. 5.133, 6).

Виды сопряжений зубчатых колес в передаче в зависимости от степени точности по нормам плавности работы указаны ниже.

Видам сопряжений Н и Е соответствует вид допуска на боковой зазор И, а видам сопряжений Д С, В и А - виды допуска сі, с, Ь и а соответственно.

Соответствие между видом сопряжения зубчатых колес в передаче и видом допуска на боковой зазор допускается изменять; при этом также могут быть использованы виды допусков х, у, ь

Устанавливаются шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрам и от / до VI.

Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния:

Допускается изменять соответствие между видом сопряжения и классом отклонений межосевого расстояния.

С увеличением в сопряжении гарантированного бокового зазора предусмотрен возрастающий по величине одноименно обозначаемый допуск (кроме сопряжения £).

Иногда конструктор вынужден назначить другой, обычно более грубый класс. Гарантированный боковой зазор в этом случае уменьшится, а его численное значение указывают в условном обозначении зубчатой передачи:

гдеупт|п ^лfa - стандартные значения гарантированного бокового зазора и предельного отклонения межосевого расстояния для данного вида

сопряжения; - отклонение межосевого расстояния для назначенного более грубого класса.

Вследствие увеличения температуры при работе передачи размеры колес увеличиваются в большей степени, чем расстояние между их осями, поэтому боковой зазор уменьшается. Боковой зазоруят1п, необходимый для компенсации температурных деформаций и размещения смазочного материала, определяется по формуле:

где V - толщина слоя смазочного материала между зубьями; а",- межосевое расстояние; а{ и а, - температурный коэффициент линейного расширения материала колес и корпуса; Д/° и - отклонение температуры колеса и корпуса от нормальной температуры (20 °С); а - угол профиля исходного контура.

Боковой зазор обеспечивают за счет радиального смешения исходного контура рейки (зуборезного инструмента) от его номинального положения / (рис. 5.134) в тело колеса. Под номинальным положением исходного контура понимается положение исходного контура на зубчатом колесе, лишенном погрешностей, при котором расстояние от рабочей оси вращения до делительной прямой равно:

где хтп - номинальное смещение исходного контура, не предусматривающее бокового зазора.

Рис. 5.134.

1 - номинальное положение исходного контура: 2 - действительное положение исходного контура

Дополнительное смещение исходного контура Е,1Г - дополнительное смешение исходного контура от его номинального положения в тело зубчатого колеса, осуществляемое с целью обеспечения в передаче гарантированного бокового зазора (см. рис. 5.134).

Наименьшую величину, дополнительное смешение исходного контура назначают в зависимости от степени точности по нормам плавности и от вида сопряжения и обозначают: для зубчатого колеса с внешними зубьями - £№, для зубчатого колеса с внутренними зубьями +ЕВ. Допуск на дополнительное смешение исходного контура Т" установлен в зависимости от допуска на радиальное биение Ег> вида сопряжения, причем Тн> ЕГТН>

Показателями бокового зазора являются: наименьшее дополнительное смещение исходного контура ЕНе(Еш) или наименьшее задаваемое отклонение средней длины обшей нормали ЕН1Упь(Ены) (рис. 5.135), или наименьшее отклонение зуба по постоянной хорде в нормальном сечении - £д, или отклонение измерительного межосевого расстояния ЕЛі ЕГ1 (рис. 5.136), или наименьшее отклонение обшей

Рис. 5.135.

нормали верхнее Ет(Ет). Их назначают в зависимости от вида сопряжения и степени точности по нормам плавности работы.

Для передач с нерегулируемым расположением осей - предельные отклонения межосевого расстояния ±/й, а с регулируемым - наименьший боковой зазорупт|п.

Средняя длина обшей нормали

Рис. 5.136.

где И", И%,]Уг - действительные длины обшей нормали; г - число зубьев.

Стандартом установлены допуски на дополнительное смешение исходного контура Тн, допуск на среднюю длину обшей нормали Тш и допуск на толщину зуба Те9 а также предельные отклонения

межосевого расстояния: нижнее - Ea.t и верхнее Ел.

Связь смешения исходного контура с боковым зазором и уменьшением толщины зуба Еа можно определить из треугольников abc и dcb (см. рис. 5.134):

Общий боковой зазор должен состоять из гарантированного зазора У"пип и зазора Кр компенсирующего погрешность изготовления зубчатых колес и монтажа передачи, уменьшающих боковой зазор, т. е.

Необходимое смешение исходного контура обоих зубчатых колесах равно

Из этой формулы следует, что различную величину бокового зазора в зависимости от вида сопряжения зубьев можно получить путем соответствующего смешения исходного контура.

Величина К} предназначена для компенсации погрешностей изготовления зубчатых колес монтажа передач: межосевого расстояния/,^ шага зацепления ^, на обоих колесах, направление зубьев Е^ на обоих колесах, отклонения от параллельности осей/^ и перекоса />г осей и может быть определена по формуле

Максимальное значение бокового зазора между зубьями в передаче стандартом не ограничивается. Его значение можно определить из решения сборочной размерной цепи, составляющими звеньями которой являются межосевое расстояние и смешение исходных контуров при нарезании обоих колес и др. При этом максимальный зазор не должен превышать значения, получаемого при наиболее неблагоприятном сочетании отклонений составляющих звеньев, т. е.

Сборка зубчатых передач

В технологическом оборудовании применяются зубчатые передачи 7, 8, 9 и 10-й степени точности, которая задается в зависимости от скорости вращения и типа передачи. В зависимости от рабочей скорости различают тихоходные (окружная скорость до 3 м/с); среднескоростные (окружная скорость 3—5 м/с); быстроходные (окружная скорость свыше 15 м/с) зубчатые передачи. При скорости вращения v = 6—10 м/с применяют прямозубые колеса 7-й или косозубые 8-й степени точности, при v = 2 м/c — прямозубые колеса 9-й степени точности, а в тихоходных передачах — колеса 10-й степени точности.

К зубчатым колесам, поступающим на сборку, и зубчатым передачам предъявляются следующие требования:

— точность изготовления зубчатых колес должна соответствовать требованиям государственных и отраслевых стандартов;

— биение колес (радиальное, торцовое) должно находиться в пределах, установленных техническими условиями для данной передачи;

— зубья колес при контроле на краску должны иметь поверхность контакта, составляющую не менее 0,3 длины и 0,6—0,7 высоты зуба;

— между зубьями колес должен быть зазор, величина которого определяется степенью точности передачи;

— оси валов под зубчатые колеса должны быть взаимно параллельны (для цилиндрической передачи) или взаимно перпендикулярны (для конической зубчатой передачи) и лежать в одной плоскости.

Сборка цилиндрических зубчатых передач. Технологический процесс сборки зубчатой передачи включает в себя следующие основные операции: сборку зубчатого колеса, если в собираемой конструкции предусмотрена установка составных зубчатых колес; установку и закрепление зубчатых колес на валах; монтаж валов с зубчатыми колесами в корпусе; проверку и регулировку зацепления; контроль

Сборка составного зубчатого колеса включает на-прессовку зубчатого венца 1 (рис. 6.33) на ступицу 2 до упора в бурт, обеспечивающего фиксацию венца в осевом направлении относительно диска ступицы, и фиксацию венца от поворота вокруг оси ступицы с помощью стопорных винтов 3 (рис. 6.33, а) или презонных болтов 4 (рис. 6.33, б).

Рис. 6.33. Составное зубчатое колесо с фиксацией зубчатого венца стопором (а) или болтами (6): 1 — зубчатый венец; 2— ступица; 3 — стопорный винт; 4 — болт

Собранная зубчатая передача должна быть испытана на холостом ходу и под нагрузкой и обеспечивать плавность и бесшумность работы, а также умеренный нагрев подшипниковых опор.

Во избежание перекоса и облегчения напрессовки зубчатый венец рекомендуется нагревать в масляной ванне или токами высокой частоты до 150 °С и вначале закреплять его на диске ступицы временными болтами, диаметр которых должен быть меньше диаметра постоянных болтов 4.

После этого проверяют биение зубчатого венца и по результатам проверки при необходимости контролируют его положение относительно ступицы, например, проточкой торцовой поверхности диска ступицы или сопрягаемой с ней поверхности зубчатого венца. При обеспечении требуемой точности его установки последовательно заменяют все временные болты постоянными, затягивая их динамометрическим ключом. После установки постоянных болтов или стопорных винтов окончательно проверяют радиальное биение зубчатого венца.

Установка зубчатых колес . Зубчатые колеса устанавливают на валы с помощью пресса и специальных приспособлений. Эту операцию выполняют также с тепловым воздействием на детали, нагревая колесо или охлаждая вал. Посадочные поверхности шейки вала и отверстия в зубчатом колесе не должны иметь дефектов в виде забоин, трещин и т.п.

Кроме искажения профиля зубчатого венца, типичными дефектами сборки являются: качание зубчатого колеса на шейке вала (рис. 6.34, а), радиальное (рис. 6.34, б) и торцовое (рис. 6.34, в) биения зубчатого колеса; неплотное прилегание его торца к упорному буртику вала (рис. 6.34, г). Радиальное биение зубчатого колеса проверяют индикаторами по диаметру начальной окружности, а торцовое — по торцовой поверхности. Для проверки вал с зубчатым колесом устанавливают на призмах или в центрах.

Рис. 6.34. Погрешности установки зубчатого колеса на валу: а — качание на шейке вала; б — радиальное биение; в — торцовое биение; г — неплотное прилегание к упорному буртику

Радиальное и торцовое биение колеса проверяют с помощью индикаторного приспособления (рис. 6.35). Вал 5 с зубчатым колесом 4 устанавливают в центрах приспособления. Поворачивая от руки вал и перекладывая контрольный валик 3 по впадинам зубьев, с помощью индикатора определяют радиальное биение зубчатого венца, равное разнице в показаниях индикатора в пределах полного оборота колеса. Далее, к торцу обода зубчатого колеса подводят ножку индикатора 1 и, поворачивая колесо, определяют его торцовое биение. Если оно больше допускаемого, то колесо переустанавливают на валу с поворотом относительно его оси на некоторый угол (при установке колеса на шлицах) и повторяют проверку биения. Эта операция может повторяться многократно для выявления положения колеса, при котором его биение минимально.

Рис. 6.35. Схема приспособления для измерения радиального и осевого биения зубчатого колеса: 1 — индикатор; 2 — индикаторная стойка; 3 — валик контрольный; 4 — контролируемое зубчатое колесо; 5 — вал; б — центр

Контрольный валик 3 имеет диаметр, равный 1,68m (где m — модуль), что обеспечивает касание валика по начальной окружности колеса. Обычно радиальное биение для колес 7-й степени точности допускается 0,03—0,08 мм, а торцовое биение — 0,04—0,08 мм на 100 мм диаметра колеса.

На условия работы зубчатых колес существенно влияет расположение ведущего и ведомого валов в корпусе. Для обеспечения геометрически правильного зубчатого зацепления оси валов должны быть взаимно параллельными (рис. 6.36). Расстояние L (мм) между ними

L = m(z 1 + z 2 )/2,

где m — модуль колес, мм; z 1 и z 2 — число зубьев соответственно на ведущем и ведомом колесах.

Рис. 6.36. Схема контрольного приспособления: 1, 3 — оправки; 2 — штихмас; 4— индикатор; 5 — штангенциркуль; D, D 1 —диаметры оправок;Ɩ 1, Ɩ 2 — расстояния между оправками; L — межосевое расстояние

Межосевое расстояние может быть больше (но не меньше) расчетного (номинального) значения на величину ΔL = am (мм) (раздвижка осей), где а — числовой коэффициент, который в зависимости от окружной скорости и межосевого расстояния находится в пределах 0,015—0,04. Меньшие значения коэффициента а соответствуют более высоким окружным скоростям и небольшим межосевым расстояниям (50—200 мм).

Зная разницу в расстояниях L 1 и L 2 между осями отверстий, измеренных в двух плоскостях при расстоянии t (мм) между ними (рис. 6.37), определяют непараллельность осей между собой.

Разность значений межосевого расстояния на длине 1 м не должна превышать допуска на раздвижку осей, т.е.

L 1 - L 2=Δ Lt/1000

Измеряя, например, в тех же плоскостях, с помощью индикатора 4 (см. рис. 6.36) расстояния от основания корпуса до осей отверстий, определяют угол скрещивания осей.

Рис. 6.37. Схема проверки параллельности осей валов: L 1 L 2 — межосевые расстояния между валами; t— расстояние между плоскостями измерений

Если расстояние между осями зубчатых колес меньше или больше допускаемого, то этот дефект устраняется при соответствующей конструкции узла выпрессовкой неправильно запрессованных втулок и последующей запрессовкой и расточкой новых втулок. Для обеспечения требуемого межосевого расстояния иногда необходима расточка отверстия новой втулки эксцентрично ее наружной поверхности.

Проверка бокового и радиального зазоров между зубьями . При монтаже зубчатых передач необходимо обеспечить определенный боковой зазор в зацеплении, правильный контакт зубьев по боковым поверхностям и радиальный зазор во впадинах зубьев.

Боковой зазор необходим для создания нормальных условий смазки зубьев, компенсации погрешностей изготовления, монтажа и температурной деформации элементов передачи. При недостаточном зазоре температурные деформации зубчатых колес в радиальном направлении вызывают выдавливание смазки и быстрое изнашивание зубьев, дополнительное нагружение подшипников и изгиб валов. Это проявляется в виде более интенсивного шума, создаваемого зубчатой передачей (гудение, скрип). При увеличенном боковом зазоре взаимодействие зубьев носит более динамичный (ударный) характер, что может быть причиной их быстрого изнашивания или поломки.

Допускаемая величина зазоров зависит от модуля и степени точности зубчатых колес. Зубчатые колеса необходимо заменять при боковом зазоре Δ б = b"m, где b "— коэффициент, учитывающий допустимый износ зубьев колес; b" = 0,15—0,25 для колес 7-й и 8-й степеней точности; b"= 0,2—0,4 для колес 9-й и 10-й степеней точности; в исключительных случаях для тихоходных колес допускается b" = 0,5.

Боковой зазор между зубьями измеряют непосредственно щупом, через угол поворота одного из зубчатых колес в пределах бокового зазора или с помощью свинцовой проволоки.

В первом случае шестерни прижимают поверхностями зубьев друг к другу, как показано на рис. 6.38, и щупом измеряют образовавшийся зазор Δ б между их свободными боковыми поверхностями. При отсутствии свободного доступа к торцам зубьев для измерения бокового зазора щупом, применяют второй способ. В этом случае одно из зубчатых колес стопорят (рис. 6.39), а на валу другого колеса закрепляют рычаг 1, который контактирует со штоком индикатора 2, закрепленного на корпусе К редуктора.

Рис. 6.38. Схема расположения радиального (Др) и бокового (Дб) зазоров в цилиндрической зубчатой передаче

Рис. 6.39. Схема измерения бокового зазора индикаторным устройством: 1 — рычаг; 2 — индикатор

Поворачивая это колесо в пределах бокового зазора из одного крайнего положения в другое, определяют величину бокового зазора Δ б (мм) через показание С индикатора, приведенное к радиусу начальной окружности зубчатого колеса: Δ б =d 1 C/L, где d 1 —диаметр начальной окружности поворачиваемого зубчатого колеса, мм; L — длина рычага до точки контакта со штоком индикатора, мм. Достоинством этого способа является возможность измерять боковой зазор в передаче без разборки механизма.

Боковой и радиальный зазоры в зубчатой передаче можно определить также по оттиску, который получают, прокатывая свинцовую проволоку между зубьями при вращении зубчатых колес. Измеряя затем микрометром толщину деформированных участков проволоки, определяют соответствующие зазоры между зубьями. Преимуществами этого способа являются простота осуществления и высокая точность измерения зазоров, поэтому он широко применяется на практике.

Допускаемые колебания боковых зазоров указываются в технических условиях на сборку узлов после ремонта. Для передач, собранных из новых зубчатых колес, допускаются следующие зазоры:

— боковой зазор Δ б = bm, где b = 0,02—0,1 — коэффициент, зависящий от окружной скорости и типа передачи;

— радиальный зазор Δ р = (0,15—0,3)m.

Величины радиального и бокового зазоров зависят от точности обработки зубчатых колес и погрешности межцентрового расстояния (раздвижки осей). Например, для эвольвентной зубчатой передачи с углом зацепления 20° влияние раздвижки осей ΔL на величину бокового зазора выражается зависимостью Δ б = 2ΔLsin20° = 0,684am.

Наименьший боковой зазор в зацеплении Δ б = 12

Нагревание зубчатого механизма в процессе работы сопровождается изменением диаметров зубчатых колес и расстояния между осями валов, что влияет на величину зазоров, образованных при сборке зубчатой передачи. Однако это влияние можно не учитывать, так как коэффициенты линейного расширения материалов корпуса и зубчатых колес имеют близкие значения.

Если зазор в зубчатом зацеплении не соответствует требованиям технических условий или зубчатые колеса вращаются с периодическим заклиниванием, то передачу необходимо разобрать, подогнать зубчатые колеса или заменить их новыми и снова произвести сборку.

При контроле величины зазора возможны следующие случаи.

1.Недостаточная величина зазора между зубьями. Причиной этого могут быть зубья, изготовленные полнее на одном или обоих зубчатых колесах. В этом случае необходимо колеса заменить.

2.Зазор в зубьях больше допускаемого. Это возможно, если толщина зубьев на одном или обоих зубчатых колесах меньше допускаемой или увеличено расстояние между осями зубчатых колес. Погрешности устраняются так же, как указано раньше.

3.Зазор в зубьях неравномерный. В этом случае определяется визуально наихудшее положение, например, наименьший зазор, после чего зубчатые колеса расцепляются, одно из них поворачивается на 180° и колеса снова сцепляются. Если после этого зацепление не изменилось, то причину следует искать во втором зубчатом колесе. Если же зазор стал больше, то причина — в первом зубчатом колесе, и его необходимо заменить.

4.Неравномерная толщина зубьев одного зубчатого колеса или эксцентричность осей начальной окружности зубьев или втулки зубчатого колеса.

5.Зубчатое колесо при зацеплении имеет биение по торцу зуба. Этот дефект возникает при перекосе оси отверстия колеса и легко выявляется индикатором. Если же зуб колеса зацепляется неправильно (утоплен в направлении торца) и при проворачивании колеса на 180° положение не меняется, то имеет место перекос в корпусе оси гнезда втулки, несущей вал зубчатого колеса. Эта погрешность исправляется путем запрессовки новой втулки и последующей ее расточки.

Проверка качания колес относительно вала . Зубчатые цилиндрические колеса, неподвижно установленные на валу, не должны иметь качаний (рис. 6.40), превышающих допускаемые значения относительно оси вала (угловое качание) и в проходящей через нее плоскости (боковое качание).

Рис. 6.40. Схема проверки качания колеса: а — в плоскости, проходящей через ось вала; б — вокруг оси вала

Допускаемая величина качания обусловлена допускаемыми значениями зазора между ступицей зубчатого колеса и валом и зазора в шпоночном или шлицевом соединении. Для колес 7-й и 8-й степеней точности допускается угловое качание не более 0,02 мм и боковое качание не более 0,05 мм на радиусе 50 мм. Оба вида качания зубчатого колеса проверяют индикаторами (см. рис. 6.40).

Для оценки качества собранного узла, кроме выполнения рассмотренных проверок, определяют мощность, необходимую для вращения вхолостую (мощность холостого хода). Для этого узел присоединяют к тарированному электродвигателю и определяют при помощи ваттметра потребляемую мощность.

Сборка конических зубчатых передач . Последовательность операций сборки узлов с коническими зубчатыми колесами и проверка собранных узлов такие же, как и при сборке цилиндрических. Конические зубчатые колеса имеют зуб переменной толщины, что усложняет их сборку. Она включает следующие работы:

— установку и закрепление зубчатых колес на валах;

— установку валов с зубчатыми колесами в корпусе;

— регулировку зубчатого зацепления с целью обеспечения требуемого зазора в передаче и плавности ее работы.

При сборке передачи необходимо установить оба сцепляемых колеса в такое положение, при котором их начальные окружности соприкасаются в одной точке (рис. 6.41), а вершины конусов и образующие конусов совмещаются, что достигается регулировкой передачи. В этом случае начальные окружности колес соприкасаются, а зазор при проворачивании колес будет равен нормальному и одинаков по всей окружности.

Рис. 6.41. Элементы зацепления конической зубчатой передачи: δ — межосевой угол передачи; φ 1. φ 2 — углы начальных конусов; Ɩ — длина образующей начального конуса

Качество сборки конической зубчатой передачи зависит от точности относительного расположения осей валов, точности изготовления и расположения зубчатых колес относительно друг друга, величин бокового и радиального зазоров, влияющих на условия контакта зубьев. Для получения правильного зацепления конических колес их оси должны быть расположены в одной плоскости. Выполнение этого условия зависит от точности расположения отверстий в корпусе механизма. При этом погрешности параметров поступающих на сборку колес не должны превышать допускаемых значений.

Собираемость конической передачи существенно зависит от фактических значений углов φ 1. φ 2 начальных конусов, определяющих межосевой угол δ передачи. Если оси колес не лежат в одной плоскости, то имеет место смещение δ осей (рис. 6.42, а). Допускаемое его значение зависит от степени точности и модуля т зубчатых колес. Например, для колес 8-й степени точности при m = 2—8 мм δ = (0,015—0,06)m, а для m = 8—14 мм δ = (0,02—0,015)m, то есть чем больше модуль, тем меньше значение числового коэффициента.

Смещение осей вызывается их расположением в различных плоскостях. Расстояние δ между плоскостями, в которых расположены оси зубчатых колес, можно определить при помощи контрольных оправок, концы которых срезаны вдоль оси (рис. 6.42, б). Его определяют, измеряя щупом или специальным калибром расстояние между плоскими поверхностями оправок, и полученную величину сравнивают с допускаемым смещением осей.

Перпендикулярность осей обычно проверяют при помощи контрольных оправок. В одно отверстие корпуса вставляют гладкую контрольную оправку 3 (рис. 6.42, в), а в другое — оправку 1 с наконечниками 2 и 4, рабочие поверхности которых расположены в плоскости, перпендикулярной к оси оправки. По разности зазоров между оправкой 3 и рабочими поверхностями наконечников 2 и 4, которые измеряют с помощью щупа, определяют неперпендикулярность осей.

Рис. 6.42. Схемы относительного расположения и контроля элементов конической зубчатой передачи: а — непересечение осей колес; б — схема контроля смещения осей валов; в — схема контроля неперпендикулярности осей валов: 1, 3— контрольные оправки; 2,4 — наконечники

Возможные варианты относительного расположения конических зубчатых колес при несовмещении вершин их начальных конусов показаны на рис. 6.43. Совмещение вершин конусов обеспечивается перемещением вдоль своих осей при сборке одного (см. рис. 6.43, а) или обоих (рис. 6.43, б, е) зубчатых колес. Несовпадение вершин конусов ΔА (рис. 6.44) как замыкающее звено размерной цепи определяется из равенства ΔА = А 1 – А 2 - А 3 и обеспечивается за счет изменения размера А 2 (толщины компенсатора 1).

Рис. 6.43. Схемы расположения зубчатых колес при несовмещении вершин их начальных конусов в одной (а) и двух (б, в) плоскостях

Регулировка конического зацепления по рассмотренной схеме при сборке неудобна, так как связана с необходимостью разборки механизма для установки компенсатора.

Регулировку проще выполнять перемещением зубчатого колеса вместе с валом (рис. 6.45) или по неподвижному валу посредством регулировочных гаек (рис. 6.46), что не требует разборки механизма.

Рис. 6.44. Схема сборки зацепления конических колес с компенсатором 1

Рис. 6.45. Конструкции узлов с регулируемым положением конической шестерни: а — узел с одним компенсатором; б — конструкция компенсатора; в — узел с двумя компенсаторами: 1 — компенсатор; 2 — крышка; 3 — корпус; 4 — стакан; 5 — вал; 6 — шестерня

Если опоры вала с коническим колесом расположены в одной стенке корпуса 3 в стакане 4 (рис. 6.45, а), то их перемещение вдоль оси вала 5 обеспечивается за счет изменения толщины а компенсатора 1

Последний обычно выполняется в виде двух полуколец (рис. 6.45, б) или комплекта тонких полуколец толщиной от 0,1 до 0,8 мм. В первом случае для возможности перемещения конического колеса на заданное расстояние сошлифовывают торец компенсатора до нужной толщины, а во втором — изменяют толщину комплекта за счет количества и толщины отдельных полуколец.

Благодаря тому, что регулировочные элементы представляют собой не целые кольца, а полукольца, при вывернутых винтах они свободно вынимаются из-под фланца стакана для изменения их толщины а и устанавливаются при сборке на место без демонтажа стакана. После этого крышка 2, стакан 4 и компенсатор 1 крепятся винтами к корпусу 3 механизма.

Если опоры вала расположены в разных стенках корпуса 3, то осевое положение вала 5 с шестерней 6 регулируют изменением толщины δ 1 и δ 2 (рис. 6.45, в) двух компенсаторов 7, каждый из которых представляет набор тонких металлических прокладок. Этими же прокладками производится регулировка подшипников. Поэтому вначале, исходя из условия обеспечения требуемого натяга подшипников, необходимо определить общую толщину δ 1 + δ 2 прокладок, а затем их переустановкой с одного места на другое отрегулировать осевое положение вала с шестерней, контролируя зубчатое зацепление.

Положение шестерни 1 вдоль оси вала 2 можно регулировать с помощью двух (рис. 6.46, а) или одной (рис. 6.46, б) гаек 3. В первом случае она фиксируется относительно вала теми же гайками, а во втором — стопорным винтом 4.

Рис. 6.46. Схемы регулирования положения конической шестерни двумя (а) или одной (б) гайками: 1 — шестерня; 2 — вал; 3 — гайка; 4 — стопорный винт

Проверка степени прилегания зубьев колес . Зацепление цилиндрических и конических колес контролируют при сборке по форме пятна контакта, обеспечивая тем самым правильность касания зубьев. Для этого зубья меньшего колеса покрывают краской и колеса приводят во вращение поочередно в одну и другую сторону, чтобы пятна краски равномерно покрыли среднюю часть боковой поверхности зубьев. После этого по отпечаткам на сопряженном зубчатом колесе судят о качестве сборки, сравнивая полученные отпечатки с установленными нормами. Покрытая пятнами площадь зависит от степени точности колеса: для передач 7-й степени точности — не менее 0,75 длины и 0,6 высоты зуба; 8-й степени — соответственно 0,6 и 0,4; 9-й степени — 0,5 и 0,3 и в передачах 10-й степени точности — 0,4 и 0,2.

Зубья 7-й и 8-й степеней точности доводят до требуемой степени прилегания боковых поверхностей приработкой и обкаткой, 9-й и 10-й степеней точности — шабрением.

Несоблюдение межцентрового расстояния, а также непараллельность и перекос осей в зубчатой передаче обуславливают неправильный контакт зубьев, что выявляют по форме и расположению пятен контакта на их рабочих поверхностях. При неправильном расположении пятен контакта зубьев цилиндрических колес следует проверить их точность, а также межцентровые расстояния и параллельность осей в корпусе.

На рис. 6.47 показана форма пятен контакта зубьев цилиндрических колес при правильном зацеплении (рис. 6.47, а) и погрешностях взаимного расположения осей (рис. 6.47, б—г).

Рис. 6.47. Расположение пятен контакта зубьев цилиндрических колес: а — при качественной сборке передачи; б — при перекосе осей колес; в — при увеличенном межосевом расстоянии; г — при уменьшенном межосевом расстоянии

По расположению пятен контакта можно установить следующие дефекты сборки цилиндрической зубчатой передачи:

1. Пятно контакта расположено с одной стороны зуба (рис. 6.47, 6). Это свидетельствует о перекосе осей колес или валов. Если положение пятна контакта не изменяется при повороте зубчатого колеса на 180°, то перекошена ось отверстий в корпусе. Для устранения этого дефекта необходимо расточить заново отверстия в корпусе, запрессовать в них втулки и расточить их под подшипники.

2. Пятно контакта расположено в верхней части зуба (рис. 6.47, в), что имеет место при увеличенном расстоянии между осями валов в корпусе. Дефект устраняется, как и в предыдущем случае.

3. Пятно контакта расположено у ножки зуба (рис. 6.47, г). Это свидетельствует о недостаточном радиальном зазоре из-за увеличенной толщины зубьев или уменьшенного межцентрового расстояния. В этом случае необходимо подобрать зубчатые колеса с меньшей толщиной зубьев или изменить, как описано выше, межцентровое расстояние.

Поверхность контакта зубьев в конической передаче меньше, чем в цилиндрической. При проверке зацепления конических передач «на краску» возможно расположение пятен контакта, как показано на рис. 6.48: а — при правильном зацеплении; б — при недостаточном зазоре между зубьями; в, г — соответственно межосевой угол больше или меньше расчетного.

Боковой зазор проверяют так же, как и в цилиндрических зубчатых передачах (щупом, свинцовой проволокой). Необходимый боковой зазор обеспечивают перемещением одного или обоих колес вдоль их осей.

Допустимые зазоры для конических колес указываются в конструкторской документации и зависят от их модуля и степени точности.

Быстроходные зубчатые передачи проверяют также на шум. Чем точнее они изготовлены и собраны, тем ниже уровень шума. Контроль осуществляется с помощью специальных приборов — шумомеров. Допускаемый уровень шума указывается в технической документации на изделие.

Рис. 6.48. Расположение пятен контакта при контроле «на краску» конической зубчатой передачи: а — при правильном зацеплении; б—г — при неправильном зацеплении

Сборка и регулировка червячных передач

При сборке червячных передач требуется обеспечить правильный контакт зубьев, необходимый боковой зазор в зацеплении и постоянство момента вращения червяка. Для этого, кроме изготовления с заданной точностью червяка и червячного колеса, необходимо обеспечить с допускаемыми погрешностями расстояние между их осями, перпендикулярность этих осей между собой и расположение оси червяка в средней плоскости венца червячного колеса.

Если выполнение первых двух требований зависит в основном от точности изготовления корпуса червячной передачи, то последнее может быть обеспечено только за счет качества сборки. При некачественной сборке снижается КПД, увеличиваются тепловыделение и интенсивность изнашивания червячной передачи.

Совмещением оси червяка 2 со средней плоскостью венца червячного колеса 1 достигается оптимальная форма пятна контакта их зубьев (рис. 6,49, а). На рис. 6.49, б,в изображены пятна контакта при неправильном зацеплении, т.е. при смещении колеса относительно оси червяка соответственно вправо на величину е 1 или влево на е 2 .

Для обеспечения надежной работы червячной передачи, между витками червяка и зубьями колеса должен быть гарантированный боковой зазор. Однако он является причиной «мертвого хода» червяка, под которым понимается угол поворота червяка, при котором червячное колесо остается неподвижным. Для новых передач величина бокового зазора составляет (0,015—0,03)m, где m — торцовый модуль передачи, мм.

Боковой зазор с (мм) определяют по углу поворота червяка при закрепленном червячном колесе; с = φmk/412, где φ — угол поворота червяка; m — осевой модуль, мм; k — число заходов червяка.

Рис. 6.49. Форма пятна контакта в червячной передаче при правильной (а) и неправильной (б, в) сборке: 1 — червячное колесо; 2 — червяк

Определяют «мертвый ход» червяка следующим образом. На вал червяка надевают градуированный диск 3 (рис. 6.50), а к одному из зубьев червячного колеса подводят индикатор 1.

Угол «мертвого хода» устанавливают по указателю 2 при покачивании червяка, причем стрелка индикатора должна оставаться неподвижной. В передачах 7-й и 8-й степеней точности «мертвый ход» червяка должен быть в пределах 8—12° при однозаходном, 4—6° при двухзаходном и 3—4° при трехзаходном червяках.

Проверка степени прилегания рабочих поверхностей червяка и червячного колеса производится «на краску». Винтовую поверхность червяка покрывают тонким слоем краски и медленно проворачивают червяк. По расположению отпечатков на колесе судят о правильности сборки передачи (см. рис. 6.49).

При наличии смещения червячного колеса 2, регулируют его положение относительно червяка 3 и одновременно натяг в подшипниках за счет изменения толщин δ 1 и δ 2 (рис. 6.51) компенсаторов 1 (набор прокладок) аналогично, как описано выше для узла с коническими зубчатыми колесами. Выверку положения червячного колеса производят также его перемещением вдоль оси вала с помощью гаек, аналогично тому, как показано на рис. 6.46, а для конического колеса. При правильном положении червяка краска должна покрывать поверхность зуба червячного колеса не менее чем на 50—60 % по длине и высоте.

Рис. 6.50. Схема проверки мертвого хода червяка: 1 — индикатор; 2 — указатель; 3 — градуированный диск

Рис. 6.51. Конструкция передачи с регулируемым положением червячного колеса:

1 — компенсаторы; 2 — червячное колесо; 3 — червяк

В случае неудовлетворительного прилегания рекомендуется пришабрить зубья, а затем их приработать. После сборки червячную передачу проверяют на легкость проворачивания вхолостую. Крутящий момент, необходимый для вращения червяка, не должен изменяться в пределах одного полного оборота червячного колеса более чем на 30—40 %.

Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мертвого хода при реверсировании отсчетных и делительных реальных передач они должны иметь боковой зазор j n (между нерабочими профилями зубьев сопряженных колес). Этот зазор необходим также для компенсации погрешностей изготовления и монтажа передачи. Боковой зазор определяют в сечении, перпендикулярном к направлению зубьев, в плоскости, касательной к основным цилиндрам (рисунок 8.2.13). Рисунок 8.2.13 Боковой зазор обеспечивается путём радиального смещения исходного контура рейки (зуборезного инструмента) от его номинального положения в теле колеса. Система допусков на зубчатые передачи устанавливает гарантированный боковой зазор j nmin , которым является наименьший предписанный боковой зазор, не зависящий от степени точности колес и передач. Он определяется по формуле: где V – толщина слоя смазочного материала между зубьями; a ω - межосевое расстояние; α 1 и α 2 – температурные коэффициенты линейного расширения материала колес и корпуса; Δt° 1 и Δt° 2 – отклонение температур колеса и корпуса от 20°C; α – угол профиля исходного контура. Толщину слоя смазки ориентировочно принимают в пределах от 0,01m (для тихоходных кинематических передач) до 0,03m (для высокоскоростных передач). Для удовлетворения требований различных отраслей промышленности, независимо от степени точности изготовления колес передачи, предусмотрено шесть видов сопряжений, определяющих различные значения j nmin: A, B,C, D, E, H (рисунок 8.2.14).
Рисунок 8.2.14 Установлено шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI. Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния (для сопряжений H и E - II класса, для сопряжений D, C, B и А - классов III, IV, V и VI соответственно). Соответствие видов сопряжений и указанных классов допускается изменять. На боковой зазор установлен допуск T jn , определяемый разностью между наибольшим и наименьшим зазорами. По мере увеличения бокового зазора увеличивается допуск T jn . Установлено восемь видов допуска T jn на боковой зазор: x, y, z, a, b, c, d, h. Видам сопряжений Н и Е соответствует вид допуска h, видам сопряжений D, C, B и A - соответственно виды допусков d, c, b и a. Соответствие видов сопряжений и видов допусков T jn допускается изменять используя при этом и виды допуска z, y и x. Биение зубчатого венца определяется как разность наибольшего и наименьшего показаний индикатора при расположении наконечника во всех впадинах контролируемого колеса.

Стандартизованными параметрами, характеризующими зубчатую передачу являются:

Модуль зубьев,

Передаточное число,

Межосевое расстояние.

Червячные передачи относятся к зубчато-винтовым. Если в зубчато-винтовой передаче углы наклона зубьев принять такими, чтобы зубья шестерни охватывали ее вокруг, то эти зубья превращаются в витки резьбы, шестерня - в червяк, а передача - из винтовой зубчатой в червячную. Преимущество червячной передачи по сравнению с винтовой зубчатой в том, что начальный контакт звеньев происходит по линии, а не в точке. Угол скрещивания валов червяка и червячного колеса может быть каким угодно, но обычно он равен 90°.

Коническая зубчатая передача

Если угол между осями равен 90°, то коническую зубчатую передачу называют ортогональной . В общем случае в неортогональной передаче угол, дополненный до 180° к углу между векторами угловых скоростей извеньев1 и 2, называют межосевым углом Σ

33\34 . Нормирование параметров размерного взаимодействия в шпоночных соединениях

ШПОНОЧНЫЕ СОЕДИНЕНИЯ

Назначение шпоночных соединений Шпоночные соединения предназначены для получения разъёмных соеди-нений, передающих крутящие моменты. Они обеспечивают вращение зубчатых колес, шкивов и других деталей, монтируемых на валы по переходным посад-кам, в которых наряду с натягами могут быть зазоры. Размеры шпоночных со-единений стандартизированы. Различают шпоночные соединения с призматическими (ГОСТ 23360), сегментными (ГОСТ 24071), клиновыми (ГОСТ 24068) и тангенциальными (ГОСТ 24069) шпонками. Шпоночные соединения с призматическими шпонка-ми применяются в малонагруженных тихоходных передачах (кинематические цепи подач станков), в крупногабаритных изделиях (кузнечно-прессовое обо-рудование, маховики двигателей внутреннего сгорания, центрифуги и др.). Клиновые и тангенциальные шпонки воспринимают осевые нагрузки при ре-версах в тяжело нагруженных соединениях. Наиболее широкое использование получили призматические шпонки. Конструктивное исполнение и размеры призматических шпонок Призматические шпонки имеют три исполнения. Вид исполнения шпонки определяет форму паза на валу. Исполнение 1 для закрытого паза, для нормального соединения в усло-виях серийного и массового типов производства; исполнение 2 для открыто-го паза с направляющими шпонками, когда втулка перемещается вдоль вала при свободном соединении; исполнение 3 для полуоткрытого паза со шпон-ками, установленными на конце вала с плотным соединением напрессованной втулки на вал в единичном и серийном типах производства. Размеры шпонки зависят от номинального размера диаметра вала и опре-деляются по ГОСТ 23360. Примеры условных обозначений шпонок: 1. Шпонка 16 х 10 х 50 ГОСТ 23360 (шпонка призматическая, исполнение 1; b х h = 16 х 10, длина шпонки l = 50). 2. Шпонка 2 (3) 18 х 11 х 100 ГОСТ 23360 (шпонка призматическая, испол-нение 2 (или 3), b х h = 18 х 11, длина шпонки l = 100). Посадки шпонок и рекомендации по выбору полей допусков Основным посадочным размером является ширина шпонки b. По этому размеру шпонка сопрягается с двумя пазами: пазом на валу и пазом во втулке. Шпонки обычно соединяются с пазами валов неподвижно, а с пазами втулок с зазором. Натяг необходим для того, чтобы шпонки не перемещались при эксплуатации, а зазор для компенсации неточности размеров и взаимного расположения пазов. Шпонки вне зависимости от посадок изготавливаются по разме-ру b с допуском h9, что делает возможным их централизованное изготовление. Остальные размеры менее ответственны: высота шпонки по h11, длина шпонки по h14, длина паза под шпонку по Н15 . Посадки шпонок осуществляются по системе вала (Сh). Стандартом до-пускаются различные сочетания полей допусков для пазов на валу и во втулке с полем допуска шпонки по ширине. Свободное соединение используется для направляющих длинных шпонок; нормальные применяются наиболее часто для крепёжных шпонок, установлен-ных в середине вала; плотное соединение – для шпонок на конце вала. Основные требования при оформлении поперечных сечений соединения с призматической шпонкой и деталей участвующих в них Предельные отклонения размеров, выбранных полей допусков, опреде-лять по таблицам ГОСТ 25347. При выполнении поперечного сечения шпоночного соединения необхо-димо указать посадки, а у шпонки – поля допусков на размеры b и h шпонки в смешанном виде и шероховатости поверхностей. На чертежах поперечных сечений вала и втулки необходимо указать шероховатости поверхностей, поля допусков на размеры b, d и D в смешанном виде, а также нормировать размеры глубины пазов: на валу t1 – предпочтительный вариант или (d – t1) c отрица-тельным отклонением и во втулке (d + t2) – предпочтительный вариант или t2 c положительным отклонением. В этом и другом случае отклонения выбираются в зависимости от высоты шпонки h . Кроме этого на чертежах по-перечных сечений вала и втулки необходимо ограничивать допусками точность формы и взаимного расположения. Предъявляются требования по допустимым отклонениям от симметричности шпоночных пазов и параллельности плоско-сти симметрии паза относительно оси детали (базы). При наличии в соединении одной шпонки допуск параллельности принимать равным 0,5IT9, допуски симетричности – 2IT9, а при двух шпонках, расположенных диаметрально, – 0,5 IT9 от номинального размера b шпонки. Допуски симметричности могут быть зависимыми в крупносерийном и массовом производстве.

Цилиндрические зубчатые передачи. Передача цилиндрическими шестернями осуществлена от верхнего коленчатого вала к кулачковым валам топливных насосов и к воздуходувке, от нижнего коленчатого вала к масляным и водяному насосам. Кроме того, в масляном насосе имеются две пары цилиндрических шестерен: с прямыми и шевронными зубьями.

Нормальная работа шестеренчатой передачи во многом зависит от зазора между зубьями шестерен. При выявлении неисправностей в работе зубчатой передачи необходимо в первую очередь проверить зазоры между зубьями шестерен. Эти зазоры проверяют при помощи индикатора, ножку которого упирают в рабочую поверхность одного из зубьев. Разность показаний индикатора при покачивании шестерен будет соответствовать действительной величине зазора между зубьями. После разборки привода, а также при замене отдельных шестерен или подшипников необходимо проверить и при необходимости отрегулировать зацепление шестерен (боковой зазор между зубьями, а также прилегание зубьев по отпечатку краски).

Регулировка зацепления шестерен привода масляного и водяного насосов. Прокладками 1 (рис. 166), которые укладывают под фланец корпуса 2, регулируют величины зазоров между зубьями шестерен 4 и 3 привода масляного насоса. Для дизелей, выпускаемых с 1961 г., у которых регулятор числа оборотов установлен на левой стороне, зацепление цилиндрических шестерен привода масляного насоса регулируют прокладками /1 (см. рис. .120). Для новых шестерен зазоры должны быть впре делах 0,24-0,4 мм, а для работавших не более 0,55 мм. Ступенчатость торцов зубьев парных шестерен допускается до 2 мм. Для удобства регулировки зазоров прокладки изготовляют толщиной 0,2; 0,3 и 0,75 мм.

При проверке прилегания зубьев отпечаток краски на каждом зубе должен быть не менее 50% длины и не менее 50% высоты зуба. Отрегулировав зацепление шестерен, просверливают два отверстия под штифты 14 в корпусе привода и в блоке и развертывают их совместно.

Регулировку зазоров между зубьями шестерен 4 и 5 привода водяного насоса и пределах 0,2-0,4 мм производят за счет перемещения корпуса (плиты), в котором монтируют насос, относительно блока дизеля. Прилегание зубьев по краске должно быть не менее 40% по высоте зуба и не менее 50% по его длине.

Аналогично регулируют зацепление шестерен привода масляного насоса центробежного фильтра. После регулировки зацепления шестерен привода водяного и масляного насосов ступенчатость шестерен не должна превышать 2 мм.

Зазоры между зубьями шестерен устанавливают в пределах 0,1-0,3 мм для любой пары новых шестерен и не более 0,55 мм для работающих шестерен. Колебания величин зазоров для одной пары шестерен не должны превышать 0,1 мм. Качество зацепления шестерен проверяется по прилеганию зубьев. Отпечаток краски должен быть не менее 50% по высоте зуба и не менее 60% по его длине с расположением отпечатка в средней части зуба. Ступенчатость всех шестерен привода не должна превышать 2 мм. Если необходимо уменьшить ступенчатость шестерен между кронштейнами 8 и блоком дизеля, устанавливают стальные прокладки.

Регулировка зацепления шестерен привода воздуходувки. При каждом монтаже воздуходувки па дизеле, замене приводных шестерен или самой воздуходувки необходимо отрегулировать зацепление ее приводных шестерен. При правильном зацеплении зазоры между зубьями шестерен находятся в пределах 0,1-0,25 мм для новых шестерен и не превышают 0,4 мм для работавших шестерен. Площадь прилегания зубьев по отпечатку краски составляет не менее 50% высоты и не менее 60% длины зуба. Ступенчатость шестерен не превышает 2 мм.

Зацепление регулируют путем перемещения воздуходувки на шпильках, которыми она прикрепляется к блоку. Такое переме щение производится только после плавного ввода в зацепление! шестерен 1 и 2 (рис. 167) и предварительной проверки зацепления. Разрешается производить рассверловку или распиловку отверстии в воздуходувке (для проходов шпилек), если имеющиеся отверстия не обеспечивают ее перемещения. Боковой зазор между зубьями шестерен проверяют следующим образом. Осторожно провертывают ведомую координационную шестерню 4 до упора зубьев шестерен 1 и 2 и в этом положении устанавливают шкалу индикатора на нуль. Затем провертывают шестерню 4 в противоположную сторону также до упора зубьев шестерен 1 и 2. По показанию индикатора определяют действительную величину зазора.

Регулировка зацепления координационных шестерен воздуходувки. Зацепление координационных шестерен воздуходувки необходимо контролировать при замене шестерен, роторов или подшипников. Координационные шестерни подбирают и прирабатывают друг к другу в процессе их изготовления. Поэтому замену этих шестерен необходимо производить только комплектно.

Зацепление координационных шестерен воздуходувки должно удовлетворять следующим требованиям.

1. Боковой зазор между зубьями новых шестерен должен быть в пределах 0,05-0,2 мм и до 0,35 мм для старых. Колебание зазоров для одной пары шестерен допускается до 0,1 мм.

2. Прилегание зубьев шестерен по краске должно быть не менее 60,% по длине зуба и не менее 50% по высоте зуба.

3. Несовпадение наружных торцов шестерен (по зубьям) допускается не более ± 1 мм.

Регулировка зацепления шестерен масляного насоса. При замене шестерен масляного насоса (синхронных или шевронных) необходимо контролировать зацепление их зубьев.

Суммарный зазор между зубьями шевронных шестерен, прижатых к одному торцу насоса, должен быть в пределах 0,10- 0,15 мм. Величину зазора обеспечивают подбором шестерен. При этом ведомую синхронную шестерню 5 (см. рис. 43) необходимо укрепить штифтом таким образом, чтобы боковой зазор с каждой стороны зуба шевронной шестерни был не менее 0,05 мм, а зазор в синхронных шестернях был выбран в сторону его уменьшения.

Боковой зазор между зубьями синхронных шестерен должен быть в пределах 0,03-0,15 мм для новых шестерен и не более 0,25 мм для работавших шестерен. Величину зазора обеспечивают подбором шестерен. Задеилсние зубьев синхронных шестерен проверяют также по отпечаткам краски, которые должны быть по высоте зуба не менее 65% и по длине зуба не менее 70%.

Зазоры между зубьями шестерен масляного насоса повышенной производительности не регулируются, а только контролируются. Качество зацепления шестерен обеспечивается изготовлением насоса и шестерен. Величина бокового зазора между зубьями не должна превышать 0,55 мм.

Конические зубчатые передачи. Шестерни с коническими зубьями установлены на вертикальной передаче, на приводах к регулятору числа оборотов и тахометру.

Качество зацепления между зубьями шестерен необходимо проверять при каждом подъемочном ремонте тепловоза, при появлении каких-либо неисправностей в работе передачи, при замене шестерен, подшипников или других деталей, а также после разборки зубчатой передачи. У каждой пары шестерен проверяют прилегание зубьев по краске и величину боковых зазоров между зубьями.

Боковые зазоры между зубьями проверяют при помощи индикатора, а качество прилегания по краске, так же как и у шестерен с цилиндрическими зубьями.

Регулировка зацепления шестерен вертикальной передачи. Перед проверкой необходимо убедиться в правильности подбора кольца 16 (см. рис. 119), которым определяется предварительная величина бокового зазора между зубьями шестерен. Для новых шестерен боковые зазоры между зубьями должны соответствовать зазору, установленному на заводе-изготовителе и нанесенному на торце одного из зубьев большой шестерни. Практически зазоры должны быть в пределах 0,3-0,55 мм (до 0,7 мм для работавших шестерен) при выбранном разбеге ко ленчатого вала в сторону увеличения зазора и не менее 0,2 мм (0,1 мм для работавших шестерен) при выбранном разбеге в сторону уменьшения зазора. При этом колебание зазоров для одной пары шестерен не должно превышать 0,25 мм.

Для проверки прилегания зубьев по краске зубья малой шестерни покрывают тонким слоем глазури (краски) и после этого проворачивают передачу на несколько оборотов сначала в одну, а потом в другую сторону. При этом разбег коленчатого вала должен быть выбран в сторону уменьшения разора.

Длина отпечатка краски на выпуклой стороне зуба большой шестерни должна быть не менее 50 мм, а на вогнутой стороне 35 мм. Отпечатки должны располагаться в зоне делительного, конуса, а по длине - несколько ближе к вершине зуба; допускается расположение отпечатка ближе к основанию при условии, что длина отпечатка будет не менее 70 мм на выпуклой стороне и не менее 50 мм на вогнутой стороне зуба. Отпечаток может быть в виде сплошного пятна или в виде двух отдельных пятен с разрывом до 6 мм по длине. Начало отпечатка должно отстоять от вершины зуба не более чем на 5 мм.

При неудовлетворительном отпечатке, а также при необходимости изменения величины зазора между зубьями производится регулировка зацепления шестерен их осевым перемещением за счет прокладок, укладываемых под фланцы больших шестерен и корпусов вертикальных валов. Прокладки, помещаемые под фланец большой шестерни, изготовляют в виде полуколец толщиной 0,1 и 0,25 мм, а прокладки под корпус вертикального вала - в виде пластин толщиной 0,1; 0,25 и 1 мм.

Регулировка зацепления шестерен привода ре г у л ят о р а числа оборотов. Зазоры между зубьями шестерен должны быть в пределах 0,1-0,2 мм для новых шестерен и не более 0,4 мм для работавших шестерен. При измерении величин зазоров необходимо выбрать возможные разбеги в каждой паре шестерен следующим образом: для одной из шестерен выбрать разбег в сторону, увеличения зазора и для другой- в сторону его уменьшения. При проверке зацепления шестерен на прилегание по краске отпечаток должен быть не менее 50% длины зуба. Необходимые величины зазора между зубьями и прилегание зубьев обеспечиваются подбором регулировочных прокладок. Ступенчатость торцов зубьев шестерен допускается до 2 мм.